The bee-identification problem, formally defined by Tandon, Tan and Varshney (2019), requires the receiver to identify "bees" using a set of unordered noisy measurements. In this previous work, Tandon, Tan, and Varshney studied error exponents and showed that decoding the measurements jointly results in a significantly smaller error exponent. In this work, we study algorithms related to this joint decoder. First, we demonstrate how to perform joint decoding efficiently. By reducing to the problem of finding perfect matching and minimum-cost matchings, we obtain joint decoders that run in time quadratic and cubic in the number of "bees" for the binary erasure (BEC) and binary symmetric channels (BSC), respectively. Next, by studying the matching algorithms in the context of channel coding, we further reduce the running times by using classical tools like peeling decoders and list-decoders. In particular, we show that our identifier algorithms when used with Reed-Muller codes terminate in almost linear and quadratic time for BEC and BSC, respectively. Finally, for explicit codebooks, we study when these joint decoders fail to identify the "bees" correctly. Specifically, we provide practical methods of estimating the probability of erroneous identification for given codebooks.
翻译:由 Tandon、 Tan 和 Varshney (2019年) 正式定义的蜜蜂识别问题要求接收者使用一套没有顺序的噪音测量方法来识别“ 蜜蜂 ” 。 在先前的这项工作中, Tandon、 Tan 和 Varshney 分别研究了错误提示表, 并表明将测量结果共同解码出出一个小得多的错误提示。 在这项工作中, 我们研究与这个联合解码器有关的算法。 首先, 我们演示如何高效地进行联合解码。 特别是, 我们通过减少找到完美匹配和最低成本匹配的问题, 我们获得了在时间上运行的“ 蜜蜂” 和“ 立方” 数量中的“ 蜜蜂” 。 在二进制清空( BEC ) 和 双进配对色频道( BSC ) 的数量中, 分别研究了错误的算法 。 我们通过使用经典的解码来进一步减少运行时间。 我们展示了在使用 Reed- Muller 代码时的识别算法在几乎直线和立式时间和立方之间终止 。 最后, 我们提供了这些 BEC 的精确的解算法 。