This work investigates the factorization of finite lattices to implode selected intervals while preserving the remaining order structure. We examine how complete congruence relations and complete tolerance relations can be utilized for this purpose and answer the question of finding the finest of those relations to implode a given interval in the generated factor lattice. To overcome the limitations of the factorization based on those relations, we introduce a new lattice factorization that enables the imploding of selected disjoint intervals of a finite lattice. To this end, we propose an interval relation that generates this factorization. To obtain lattices rather than arbitrary ordered sets, we restrict this approach to so-called pure intervals. For our study, we will make use of methods from Formal Concept Analysis (FCA). We will also provide a new FCA construction by introducing the enrichment of an incidence relation by a set of intervals in a formal context, to investigate the approach for lattice-generating interval relations on the context side.
翻译:这项工作调查了在保留其余的秩序结构的同时,将某些固定时间间隔内插为内插选定时间间隔的因子的因子的因子化。 我们研究如何为此目的利用完整的和谐关系和完全的容忍关系,并回答找到这些关系中最优的因子内插一个间隔的问题。 为了克服基于这些关系的因子化的局限性, 我们引入了新的拉特因子化, 使有限的时间间隔内插选定的不连贯间隔内插。 为此, 我们提议了产生这种因子化的间隔关系。 为了获得固定时间间隔, 而不是任意定购的套件, 我们将此方法限制在所谓的纯间隔内。 对于我们的研究, 我们将使用正式概念分析( FCA) 中的方法。 我们还将提供一个新的FCA 构造, 通过在正式背景下以一组间隔内增加事件关系, 来调查上下文上层的拉特间隔关系的方法 。