The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input is a set of $d$-dimensional rectangles, and the goal is to pack them into unit $d$-dimensional cubes efficiently. It is NP-Hard to obtain a PTAS for the problem, even when $d=2$. For general $d$, the best known approximation algorithm has an approximation guarantee exponential in $d$, while the best hardness of approximation is still a small constant inapproximability from the case when $d=2$. In this paper, we show that the problem cannot be approximated within $d^{1-\epsilon}$ factor unless NP=ZPP. Recently, $d$-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown to be hard to approximate within $\Omega(\log d)$ when $d$ is a fixed constant, using a notion of Packing Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric Packing Dimension of set families. While we fall short of obtaining similar inapproximability results for the Geometric Bin Packing problem when $d$ is fixed, we prove a couple of key properties of the Geometric Packing Dimension that highlight the difference between Geometric Packing Dimension and Packing Dimension.


翻译:几何 Bin 包装( GBP) 问题是 Bin 包装( GBP) 的概括化问题, 输入是一组美元=2美元的情况, 目标是将输入以美元计的立方体包装成单位 $d$ 元。 即便在美元=2美元的情况下, 也是 NP- Hard 来获得问题 PTAS 。 对于一般的 $d 美元, 最已知的近似算法有一个以美元计的近似保证指数, 而近似的难度仍然比当美元=2美元时的情况小得多。 在本文中, 我们显示, 除非 NPZPPP, 问题无法在单位 美元=1\\ epsilon} 系数中大致接近问题。 最近, 美元 美元- 美元- 方位本 Bin 包装( 与英镑密切相关), 当美元是固定不变的时, 当美元是固定的时, 最接近的近似于美元, 。 在本文中, 我们引入一个几何类类类类比数的测地基质的地平面的地平面的矩阵的地平面, 当我们在的测地差的测地差的测地差的差的差结果时, 我们短的测得的差的测重的差的差的测得的差的差的 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月11日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月10日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员