The Geometric Bin Packing (GBP) problem is a generalization of Bin Packing where the input is a set of $d$-dimensional rectangles, and the goal is to pack them into unit $d$-dimensional cubes efficiently. It is NP-Hard to obtain a PTAS for the problem, even when $d=2$. For general $d$, the best known approximation algorithm has an approximation guarantee exponential in $d$, while the best hardness of approximation is still a small constant inapproximability from the case when $d=2$. In this paper, we show that the problem cannot be approximated within $d^{1-\epsilon}$ factor unless NP=ZPP. Recently, $d$-dimensional Vector Bin Packing, a closely related problem to the GBP, was shown to be hard to approximate within $\Omega(\log d)$ when $d$ is a fixed constant, using a notion of Packing Dimension of set families. In this paper, we introduce a geometric analog of it, the Geometric Packing Dimension of set families. While we fall short of obtaining similar inapproximability results for the Geometric Bin Packing problem when $d$ is fixed, we prove a couple of key properties of the Geometric Packing Dimension that highlight the difference between Geometric Packing Dimension and Packing Dimension.
翻译:几何 Bin 包装( GBP) 问题是 Bin 包装( GBP) 的概括化问题, 输入是一组美元=2美元的情况, 目标是将输入以美元计的立方体包装成单位 $d$ 元。 即便在美元=2美元的情况下, 也是 NP- Hard 来获得问题 PTAS 。 对于一般的 $d 美元, 最已知的近似算法有一个以美元计的近似保证指数, 而近似的难度仍然比当美元=2美元时的情况小得多。 在本文中, 我们显示, 除非 NPZPPP, 问题无法在单位 美元=1\\ epsilon} 系数中大致接近问题。 最近, 美元 美元- 美元- 方位本 Bin 包装( 与英镑密切相关), 当美元是固定不变的时, 当美元是固定的时, 最接近的近似于美元, 。 在本文中, 我们引入一个几何类类类类比数的测地基质的地平面的地平面的矩阵的地平面, 当我们在的测地差的测地差的测地差的差的差结果时, 我们短的测得的差的测重的差的差的测得的差的差的 。