We consider the problem of online interval scheduling on a single machine, where intervals arrive online in an order chosen by an adversary, and the algorithm must output a set of non-conflicting intervals. Traditionally in scheduling theory, it is assumed that intervals arrive in order of increasing start times. We drop that assumption and allow for intervals to arrive in any possible order. We call this variant any-order interval selection (AOIS). We assume that some online acceptances can be revoked, but a feasible solution must always be maintained. For unweighted intervals and deterministic algorithms, this problem is unbounded. Under the assumption that there are at most $k$ different interval lengths, we give a simple algorithm that achieves a competitive ratio of $2k$ and show that it is optimal amongst deterministic algorithms, and a restricted class of randomized algorithms we call memoryless, contributing to an open question by Adler and Azar 2003; namely whether a randomized algorithm without access to history can achieve a constant competitive ratio. We connect our model to the problem of call control on the line, and show how the algorithms of Garay et al. 1997 can be applied to our setting, resulting in an optimal algorithm for the case of proportional weights. We also consider the case of intervals arriving in a random order, and show that for single-lengthed instances, a one-directional algorithm (i.e. replacing intervals in one direction), is the only deterministic memoryless algorithm that can possibly benefit from random arrivals. Finally, we briefly discuss the case of intervals with arbitrary weights.
翻译:我们考虑的是单一机器的在线间距排期问题,在一台机器上,间隔以对手选择的顺序到达在线,而算法必须输出一组非冲突间距。在排期理论中,传统上假设间距达到增加起始时间的顺序。我们降低这一假设,允许间距达到任何可能的顺序。我们称该变式为任意间隔选择(AOIS ) 。我们假设某些在线接受可以取消,但必须始终保持可行的解决办法。对于未加权间隔和确定性算法,这一问题是没有限制的。根据一个假设,即最短的间距为美元,我们给出了一组非冲突间距,我们给出了一个简单的算法,达到2K$的竞争性比重,并表明在确定性算法之间是最佳的。我们称之为“不留记忆”和“阿扎尔”的随机算法,即不接触历史的随机算法算法能否达到固定的竞争比率。我们将模型与线上的调控问题连接起来,并显示加拉伊和“等”的间距长度长度长度,我们给出了一个简单的算法,我们也可以用一个任意的算法来得出一个比例。我们的一个比例的算法,我们最后的算法将得出一个最优的顺序。我们的一个案子,最后的顺序。我们可以用来得出一个最优的算法。</s>