Radiologists have different training and clinical experiences, so they may provide various segmentation annotations for a lung nodule, which causes segmentation uncertainty among multiple annotations. Conventional methods usually chose a single annotation as the learning target or tried to learn a latent space of various annotations. Still, they wasted the valuable information of consensus or disagreements ingrained in the multiple annotations. This paper proposes an Uncertainty-Aware Attention Mechanism (UAAM), which utilizes consensus or disagreements among annotations to produce a better segmentation. In UAAM, we propose a Multi-Confidence Mask (MCM), which is a combination of a Low-Confidence (LC) Mask and a High-Confidence (HC) Mask. LC mask indicates regions with low segmentation confidence, which may cause different segmentation options among radiologists. Following UAAM, we further design an Uncertainty-Guide Segmentation Network (UGS-Net), which contains three modules:Feature Extracting Module captures a general feature of a lung nodule. Uncertainty-Aware Module produce three features for the annotations' union, intersection, and annotation set. Finally, Intersection-Union Constraining Module use distances between three features to balance the predictions of final segmentation, LC mask, and HC mask. To fully demonstrate the performance of our method, we propose a Complex Nodule Challenge on LIDC-IDRI, which tests UGS-Net's segmentation performance on the lung nodules that are difficult to segment by U-Net. Experimental results demonstrate that our method can significantly improve the segmentation performance on nodules with poor segmentation by U-Net.
翻译:放射科医生具有不同的训练和临床经验,因此他们可能对肺结节提供不同的分割注释,这在多个注释中引起分割不确定性。传统方法通常选择单个注释作为学习目标,或者尝试学习各种注释的潜在空间,但它们浪费了多个注释中蕴含的共识或分歧的宝贵信息。本文提出了一种不确定性感知注意力机制(UAAM),它利用注释之间的共识或分歧产生更好的分割结果。在UAAM中,我们提出了一个多置信度掩模(MCM),它是低置信度(LC)掩模和高置信度(HC)掩模的组合。LC掩模指的是分割置信度较低的区域,这可能导致放射科医生之间的不同分割选择。在UAAM之后,我们进一步设计了一个不确定性引导分割网络(UGS-Net),它包含三个模块:特征提取模块捕获肺结节的普遍特征。不确定性感知模块为注释的并集、交集和注释集生成三个特征。最后,交集-并集约束模块使用三个特征之间的距离来平衡最终分割、LC掩模和HC掩模的预测。为充分展示我们的方法的性能,我们在LIDC-IDRI上提出了一个复杂肺结节挑战赛,测试UGS-Net对于由U-Net难以分割的肺结节的分割性能。实验结果表明,我们的方法可以显着提高U-Net分割下差的结节的分割性能。