We present a novel search optimization solution for approximate nearest neighbor (ANN) search on resource-constrained edge devices. Traditional ANN approaches fall short in meeting the specific demands of real-world scenarios, e.g., skewed query likelihood distribution and search on large-scale indices with a low latency and small footprint. To address these limitations, we introduce two key components: a Query Likelihood Boosted Tree (QLBT) to optimize average search latency for frequently used small datasets, and a two-level approximate search algorithm to enable efficient retrieval with large datasets on edge devices. We perform thorough evaluation on simulated and real data and demonstrate QLBT can significantly reduce latency by 15% on real data and our two-level search algorithm successfully achieve deployable accuracy and latency on a 10 million dataset for edge devices. In addition, we provide a comprehensive protocol for configuring and optimizing on-device search algorithm through extensive empirical studies.
翻译:暂无翻译