In hyperspectral, high-quality spectral signals convey subtle spectral differences to distinguish similar materials, thereby providing unique advantage for anomaly detection. Hence fine spectra of anomalous pixels can be effectively screened out from heterogeneous background pixels. Since the same materials have similar characteristics in spatial and spectral dimension, detection performance can be significantly enhanced by jointing spatial and spectral information. In this paper, a spectralspatial fusion anomaly detection (SSFAD) method is proposed for hyperspectral imagery. First, original spectral signals are mapped to a local linear background space composed of median and mean with high confidence, where saliency weight and feature enhancement strategies are implemented to obtain an initial detection map in spectral domain. Futhermore, to make full use of similarity information of local background around testing pixel, a new detector is designed to extract the local similarity spatial features of patch images in spatial domain. Finally, anomalies are detected by adaptively combining the spectral and spatial detection maps. The experimental results demonstrate that our proposed method has superior detection performance than traditional methods.
翻译:在超光谱中,高质量的光谱信号传递出细微的光谱差异,以区分类似的材料,从而为异常探测提供独特的优势。因此,异常象素的细微光谱可以有效地从各种背景像素中筛选出来。由于同一种材料在空间和光谱方面具有相似的特性,因此可以通过空间和光谱信息联合来大大增强探测性。在本文中,提议对超光谱图像采用光谱空间聚变异常探测方法。首先,原始光谱信号被映射到一个由中位和中位而具有高度信心的局部线性背景空间,在那里,为了在光谱范围内获得初步的探测地图,实施了突出的重量和特征增强战略。为了充分利用光谱试验像素周围当地背景的相似性信息,富瑟摩尔设计了一种新的探测器,以提取空间域中近相图像的当地相似性空间特征。最后,通过将光谱和空间探测图的适应性结合而探测出异常现象。实验结果表明,我们提出的方法的探测性优于传统方法。