项目名称: 无约束不确定RFID数据流近似去噪
项目编号: No.61262009
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 廖国琼
作者单位: 江西财经大学
项目金额: 45万元
中文摘要: RFID技术已成为物联网领域不可或缺的支撑技术,正显现出巨大的发展潜力与广泛的应用前景。然而,由于射频技术自身的不稳定及易受外部环境影响,来自读写器的数据通常是不完整且具有噪声,已严重阻碍到RFID技术的推广应用。为提高RFID数据流的完整性和可靠性,本课题根据RFID数据流的不确定性、随机性及近似性等特点,针对"重复读"、"交叉读"和"漏读"等三类典型噪声,研究无约束RFID数据流近似去噪理论与技术,主要研究内容包括:不确定RFID数据流模型及去噪系统框架;衰减滑动时间窗口模型及窗口自适应调整策略;基于概率综合Bloom过滤器的近似消重策略;基于概率核密度的"交叉读"去伪策略;基于Top-K概率频繁模式挖掘的漏读填补策略等。本项目主要特色为:建立相互联系、相互补充、基于概率的统一去噪系统框架,以及基于不确定数据流挖掘方法的近似去噪理论与方法,而无须任何约束条件和先验知识,故适用范围广泛。
中文关键词: RFID;不确定数据流;数据挖掘;近似去噪;数据清洗
英文摘要: RFID technology has been the key technology in the field of Things of Internet, and it appears enormous development potential and extensive application perspective. However, the data from the RFID readers are always imperfect and full of noise due to the instability and influence easily by external environment of radio frequency technology, which has been the important factor blocking the application widely of RFID technology currently. In order to enhance the integrity and reliability of RFID data stream, aimed at three typical kinds of noise such as missing-readings, cross-readings and duplicate readings, taking sufficiently the features like uncertainty, randomness and proximity into account, this project mainly researches approximative denoising theories and technologies in RFID data stream without using any constraints. The research contents of this project mainly include: the model of uncertain RFID data streams and the framework of the denoising system; the model of damping sliding time windows and the adaptive window adjustment strategy; the approximate duplication elimination strategy based on a probability comprehensive Bloom filter; the strategy of fake elimination based on the probability kernel density for the cross-readings, and the strategy based on Top-k probability frequency pattern mining for t
英文关键词: RFID;Uncertain RFID data stream;Data mining;;Approximate denosing;;Data cleaning