Many applications for the automated diagnosis of plant disease have been developed based on the success of deep learning techniques. However, these applications often suffer from overfitting, and the diagnostic performance is drastically decreased when used on test datasets from new environments. In this paper, we propose LeafGAN, a novel image-to-image translation system with own attention mechanism. LeafGAN generates a wide variety of diseased images via transformation from healthy images, as a data augmentation tool for improving the performance of plant disease diagnosis. Thanks to its own attention mechanism, our model can transform only relevant areas from images with a variety of backgrounds, thus enriching the versatility of the training images. Experiments with five-class cucumber disease classification show that data augmentation with vanilla CycleGAN cannot help to improve the generalization, i.e., disease diagnostic performance increased by only 0.7% from the baseline. In contrast, LeafGAN boosted the diagnostic performance by 7.4%. We also visually confirmed the generated images by our LeafGAN were much better quality and more convincing than those generated by vanilla CycleGAN. The code is available publicly at: https://github.com/IyatomiLab/LeafGAN.


翻译:植物疾病自动诊断的许多应用都是根据深层学习技术的成功经验开发的,然而,这些应用往往过于完善,如果在新环境中的测试数据集中使用,诊断性能就会大大降低。在本论文中,我们提议使用新的图像到图像翻译系统LeafGAN,这是一个崭新的图像到图像翻译系统,并有自己的关注机制。LeafGAN通过从健康图像转换产生各种各样的疾病图像,作为改善植物疾病诊断性能的数据增强工具,作为改善植物疾病诊断性能的数据增强工具。由于自己的关注机制,我们的模型只能从不同背景的图像中转换相关区域,从而丰富培训图像的多变性。五级黄瓜疾病分类实验显示,与香草循环GAN进行的数据增强不能帮助改进一般化,也就是说,疾病诊断性能仅比基线提高0.7%。相比之下,LeafGAN提高诊断性能7.4%。我们还通过视觉确认我们的LeafGAN生成的图像比香草循环GAN生成的图像质量高得多,而且更令人信服。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2020年12月7日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2020年12月7日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员