The Hessian of a neural network captures parameter interactions through second-order derivatives of the loss. It is a fundamental object of study, closely tied to various problems in deep learning, including model design, optimization, and generalization. Most prior work has been empirical, typically focusing on low-rank approximations and heuristics that are blind to the network structure. In contrast, we develop theoretical tools to analyze the range of the Hessian map, providing us with a precise understanding of its rank deficiency as well as the structural reasons behind it. This yields exact formulas and tight upper bounds for the Hessian rank of deep linear networks, allowing for an elegant interpretation in terms of rank deficiency. Moreover, we demonstrate that our bounds remain faithful as an estimate of the numerical Hessian rank, for a larger class of models such as rectified and hyperbolic tangent networks. Further, we also investigate the implications of model architecture (e.g.~width, depth, bias) on the rank deficiency. Overall, our work provides novel insights into the source and extent of redundancy in overparameterized networks.


翻译:神经网络的黑森人通过损失的二阶衍生物捕捉参数的相互作用。 它是一个基本的研究对象,与深层次学习中的各种问题紧密相连,包括模型设计、优化和一般化。 大部分以前的工作都是经验性的工作,通常侧重于对网络结构视而不见的低级近似值和累进论。 相反,我们开发了理论工具来分析赫森地图的范围,使我们精确地了解其等级缺陷及其背后的结构性原因。 这为深线网络的赫斯人排名提供了精确的公式和紧凑的上界,允许对等级缺陷进行优雅的解释。 此外,我们证明我们的界限仍然是对数字赫森人的排名的估计,对于诸如校正和超偏执的网络等较大型的模型而言。 此外,我们还调查了模型结构(例如~宽度、深度、偏差)对等级缺陷的影响。 总体而言,我们的工作提供了对过分分化的网络的冗余源和程度的新洞察。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
【干货51页PPT】深度学习理论理解探索
专知会员服务
61+阅读 · 2019年12月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月2日
Bayesian Attention Belief Networks
Arxiv
9+阅读 · 2021年6月9日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
19+阅读 · 2018年6月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员