In standard neural networks the amount of computation used grows with the size of the inputs, but not with the complexity of the problem being learnt. To overcome this limitation we introduce PonderNet, a new algorithm that learns to adapt the amount of computation based on the complexity of the problem at hand. PonderNet learns end-to-end the number of computational steps to achieve an effective compromise between training prediction accuracy, computational cost and generalization. On a complex synthetic problem, PonderNet dramatically improves performance over previous adaptive computation methods and additionally succeeds at extrapolation tests where traditional neural networks fail. Also, our method matched the current state of the art results on a real world question and answering dataset, but using less compute. Finally, PonderNet reached state of the art results on a complex task designed to test the reasoning capabilities of neural networks.1
翻译:在标准神经网络中,使用的计算量随着投入量的大小而增加,但不会随着所学问题的复杂性而增加。为了克服这一局限性,我们引入了PonderNet,这是一个根据问题的复杂性来调整计算量的新算法。PonderNet从终端到终端学习计算步骤的数量,以在培训预测准确性、计算成本和一般化之间实现有效妥协。关于复杂的合成问题,PonderNet大大改进了以往适应性计算方法的性能,并在传统神经网络失灵的外推测试中取得了更多的成功。此外,我们的方法与现实世界问题和回答数据集的当前艺术结果相匹配,但使用较少的计算。最后,PonderNet在一项旨在测试神经网络推理能力的复杂任务上达到了艺术结果的状态。