Understanding the great empirical success of artificial neural networks (NNs) from a theoretical point of view is currently one of the hottest research topics in computer science. In order to study the expressive power of NNs with rectified linear units, we propose to view them as a model of computation and investigate the complexity of combinatorial optimization problems in that model. Using a result from arithmetic circuit complexity, we show as a first immediate result that the value of a minimum spanning tree in a graph with $n$ nodes can be computed by an NN of size $\mathcal{O}(n^3)$. Our primary result, however, is that, given a directed graph with $n$ nodes and $m$ arcs, there exists an NN of size $\mathcal{O}(m^2n^2)$ that computes a maximum flow from any possible real-valued arc capacities as input. This settles the former open questions whether such NNs with polynomial size exist. To prove our results, we develop the pseudo-code language Max-Affine Arithmetic Programs (MAAPs) and show equivalence between MAAPs and NNs concerning natural complexity measures. We then design MAAPs that exactly solve the corresponding optimization problems and translate to NNs of the claimed size.
翻译:从理论角度理解人工神经网络的巨大成功经验,从理论角度理解人工神经网络(NNS)是目前计算机科学中最热门的研究课题之一。然而,为了以纠正线性单元来研究NNS的表达力,我们提议把它们看成一个计算模型,并调查该模型中组合优化问题的复杂性。使用算术电路复杂性的结果,我们作为第一个即时结果显示,用美元节点绘制的图中最小的横线树值,可以用美元(n)(n)3美元来计算。然而,我们的主要结果是,如果用美元节点和美元弧弧值的直线图形来研究NNNS的表达力,则存在一个以$\mathcal{O}(m\2n)为单位的NNNNN($=2)的计算模型,从任何可能的真正价值弧能力作为输入的最大流量。这解决了以前尚未解决的问题,即是否用美元大小的NNNUS($3)来计算。为了证明我们的结果,我们开发了假编码语言的Max-Affirme Arimetical Protical Protical Program Programpal Programpeal Progration pal Progration pal practs pal deal deal deal deal maquimas pal deal maps pal deal mas pals pals pal mas promas pal mas pals palsal mas pals pals pals pals pals pals paldals paldal maps.