We study the bias of Stochastic Gradient Descent (SGD) to learn low-rank weight matrices when training deep ReLU neural networks. Our results show that training neural networks with mini-batch SGD and weight decay causes a bias towards rank minimization over the weight matrices. Specifically, we show, both theoretically and empirically, that this bias is more pronounced when using smaller batch sizes, higher learning rates, or increased weight decay. Additionally, we predict and observe empirically that weight decay is necessary to achieve this bias. Unlike previous literature, our analysis does not rely on assumptions about the data, convergence, or optimality of the weight matrices and applies to a wide range of neural network architectures of any width or depth. Finally, we empirically investigate the connection between this bias and generalization, finding that it has a marginal effect on generalization.
翻译:暂无翻译