Scheduling the batch size to increase is an effective strategy to control gradient noise when training deep neural networks. Current approaches implement scheduling heuristics that neglect structure within the optimization procedure, limiting their flexibility to the training dynamics and capacity to discern the impact of their adaptations on generalization. We introduce Arbiter as a new hyperparameter optimization algorithm to perform batch size adaptations for learnable scheduling heuristics using gradients from a meta-objective function, which overcomes previous heuristic constraints by enforcing a novel learning process called hyper-learning. With hyper-learning, Arbiter formulates a neural network agent to generate optimal batch size samples for an inner deep network by learning an adaptive heuristic through observing concomitant responses over T inner descent steps. Arbiter avoids unrolled optimization, and does not require hypernetworks to facilitate gradients, making it reasonably cheap, simple to implement, and versatile to different tasks. We demonstrate Arbiter's effectiveness in several illustrative experiments: to act as a stand-alone batch size scheduler; to complement fixed batch size schedules with greater flexibility; and to promote variance reduction during stochastic meta-optimization of the learning rate.
翻译:在培训深神经网络时,提高批量规模是控制梯度噪音的有效战略。目前的办法是在优化程序内实施忽视结构的排期超常结构,将其灵活性限制在培训动态和辨别其适应对一般化的影响的能力上,将其限制在培训动态和能力上,以辨别其适应对一般化的影响。我们引入仲裁者作为一种新的超参数优化算法,以利用一个元目标功能的梯度对可学习的排排量进行批量调整,使用一个元目标功能的梯度,通过实施一个叫作超学的新学习过程,克服以往的超常限制。随着超常学习,仲裁者将开发一个神经网络代理器,以生成一个内深层网络的最佳批量样本,通过观察 T 内下层步骤的同步反应,学习适应性超链接。仲裁者避免无节制的优化,不需要超大型网络来便利梯度,使梯度变得合理便宜、易于执行和适应不同任务。我们在若干说明性实验中证明仲裁者的有效性:作为独立的批量计;以更大的灵活性补充固定批量规模的排程;促进学习率期间的差异缩小。