Federated learning enables multiple users to build a joint model by sharing their model updates (gradients), while their raw data remains local on their devices. In contrast to the common belief that this provides privacy benefits, we here add to the very recent results on privacy risks when sharing gradients. Specifically, we propose Label Leakage from Gradients (LLG), a novel attack to extract the labels of the users' training data from their shared gradients. The attack exploits the direction and magnitude of gradients to determine the presence or absence of any label. LLG is simple yet effective, capable of leaking potential sensitive information represented by labels, and scales well to arbitrary batch sizes and multiple classes. We empirically and mathematically demonstrate the validity of our attack under different settings. Moreover, empirical results show that LLG successfully extracts labels with high accuracy at the early stages of model training. We also discuss different defense mechanisms against such leakage. Our findings suggest that gradient compression is a practical technique to prevent our attack.
翻译:联邦学习让多个用户能够通过共享模型更新( 梯度) 建立一个联合模型, 而他们的原始数据仍然在设备上是本地的。 与人们通常认为这可以提供隐私福利相反, 我们在此补充了在共享梯度时隐私风险的最新结果。 具体地说, 我们提议从梯度( LLG) 中解密 Label Leakage, 这是一次新颖的攻击, 目的是从共享梯度中提取用户培训数据标签的标签。 袭击利用梯度的方向和大小来确定是否存在任何标签。 LLG 简单而有效, 能够将标签代表的潜在敏感信息泄漏到任意的批量大小和多类。 我们从经验上和数学上展示了我们在不同环境下袭击的有效性。 此外, 实证结果显示, LLG 在模型培训的早期阶段成功提取了非常精确的标签。 我们还讨论了防止此类泄漏的不同防御机制。 我们发现, 梯度压缩是一种防止攻击的实用方法。