Video super-resolution (VSR) aims to estimate a high-resolution (HR) frame from a low-resolution (LR) frames. The key challenge for VSR lies in the effective exploitation of spatial correlation in an intra-frame and temporal dependency between consecutive frames. However, most of the previous methods treat different types of the spatial features identically and extract spatial and temporal features from the separated modules. It leads to lack of obtaining meaningful information and enhancing the fine details. In VSR, there are three types of temporal modeling frameworks: 2D convolutional neural networks (CNN), 3D CNN, and recurrent neural networks (RNN). Among them, the RNN-based approach is suitable for sequential data. Thus the SR performance can be greatly improved by using the hidden states of adjacent frames. However, at each of time step in a recurrent structure, the RNN-based previous works utilize the neighboring features restrictively. Since the range of accessible motion per time step is narrow, there are still limitations to restore the missing details for dynamic or large motion. In this paper, we propose a group-based bi-directional recurrent wavelet neural networks (GBR-WNN) to exploit the sequential data and spatio-temporal information effectively for VSR. The proposed group-based bi-directional RNN (GBR) temporal modeling framework is built on the well-structured process with the group of pictures (GOP). We propose a temporal wavelet attention (TWA) module, in which attention is adopted for both spatial and temporal features. Experimental results demonstrate that the proposed method achieves superior performance compared with state-of-the-art methods in both of quantitative and qualitative evaluations.
翻译:视频超分辨率(VSR)的目的是从低分辨率(LR)框架来估计高分辨率(HR)框架。 VSR的主要挑战在于有效地利用内部和连续框架之间的时间依赖性空间相关性。然而,大多数先前的方法对不同类型的空间特征进行相同的处理,并从分离的模块中提取空间和时间特征。这导致缺乏有意义的信息并加强细微的细节。在VSR中,有三类时间模型框架:2D 动态神经网络(CNN)、3D CNN和经常性神经网络(RNN)。其中,基于 RNN 的方法适合顺序数据。因此,使用相邻框架的隐藏状态可以大大改进SR的性能。然而,在经常性结构的每一个时间步骤中,基于RNNW的以往作品都使用了相邻特征。由于每时一步可进入的运动范围很窄,恢复动态或大型运动缺失的细节仍然有局限性。在本文中,我们提议在基于集团的双向双向的周期动态动态动态网络中,用SAR-ROFS-BS-BS-BS-R-Ral-rodal-rodual Tal-roal rodu laental laftal or-hal or-hal roma-hal-hal-hal-hal-hal-hal-roma-mod-mod-mod-rog-ro-roma-mod-mod-mod-rog-rog-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-modal-mod-mod-rod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod