The word order between source and target languages significantly influences the translation quality in machine translation. Preordering can effectively address this problem. Previous preordering methods require a manual feature design, making language dependent design costly. In this paper, we propose a preordering method with a recursive neural network that learns features from raw inputs. Experiments show that the proposed method achieves comparable gain in translation quality to the state-of-the-art method but without a manual feature design.
翻译:源与目标语言之间的文字顺序会极大地影响机器翻译的翻译质量。 预先排序可以有效地解决这一问题。 先前的预先排序方法需要手动的功能设计,使得依赖语言的设计费用昂贵。 在本文中,我们提出了一个预排序方法,配有从原始投入中学习特征的循环神经网络。 实验显示,拟议方法在翻译质量上取得了与最新方法相当的收益,但没有手动功能设计。