Causal inference is only valid when its underlying assumptions are satisfied, one of the most central being the ignorability assumption (also known as unconfoundedness or exogeneity). In practice, however, this assumption is often unrealistic in observational studies, as some confounding variables may remain unobserved. To address this limitation, sensitivity models for Inverse Probability Weighting (IPW) estimators, known as Marginal Sensitivity Models, have been introduced, allowing for a controlled relaxation of ignorability. Over the past decades, a substantial body of literature has emerged around these models, aiming to derive sharp and robust bounds for both binary and continuous treatment effects. A key element of these approaches is the specification of a sensitivity parameter, sometimes referred to as the "confounding strength", which quantifies the extent of deviation from ignorability. Yet, determining an appropriate value for this parameter is challenging, and the final interpretation of sensitivity analyses can be unclear. We believe these difficulties represent major obstacles to the adoption of such methods in practice. In this review, after introducing sensitivity analyses for IPW estimators, we focus on different strategies to estimate or lower bound the confounding strength, select the most suitable approach, and avoid common pitfalls in the interpretation of results.
翻译:暂无翻译