Vision Transformers (ViTs) with self-attention modules have recently achieved great empirical success in many vision tasks. Due to non-convex interactions across layers, however, theoretical learning and generalization analysis is mostly elusive. Based on a data model characterizing both label-relevant and label-irrelevant tokens, this paper provides the first theoretical analysis of training a shallow ViT, i.e., one self-attention layer followed by a two-layer perceptron, for a classification task. We characterize the sample complexity to achieve a zero generalization error. Our sample complexity bound is positively correlated with the inverse of the fraction of label-relevant tokens, the token noise level, and the initial model error. We also prove that a training process using stochastic gradient descent (SGD) leads to a sparse attention map, which is a formal verification of the general intuition about the success of attention. Moreover, this paper indicates that a proper token sparsification can improve the test performance by removing label-irrelevant and/or noisy tokens, including spurious correlations. Empirical experiments on synthetic data and CIFAR-10 dataset justify our theoretical results and generalize to deeper ViTs.


翻译:具有自我注意模块的视觉变异器(VIT)最近在许多视觉任务中取得了巨大的实证成功。然而,由于不同层次的非混凝土相互作用,理论学习和概括分析大多难以实现。根据一个数据模型,以标签相关标志和标签相关标志为特征,本文首次对用于分类任务的浅维特培训进行了理论分析,即一个自我注意层,然后是两层透视层。我们用样本的复杂性来描述一个零泛化错误。我们的样本复杂性与标签相关符号的分数、象征性噪音等级和初始模型错误呈正反正关系。我们还证明,使用随机梯度梯度脱落(SGD)的培训过程导致人们很少注意,这是对关注成功的一般直觉的正式核查。此外,本文指出,适当的象征性蒸发可以通过消除标签相关标志和/或噪音标志,包括虚假的关联,改进测试性性能。关于合成数据的实验实验实验和CIFAR-10数据显示我们更深层次的理论结果和总体结果的合理性。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
32+阅读 · 2021年3月8日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员