In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis.
翻译:在本条中,我们为高维数据矩阵引入了双向要素模型,并研究了最大可能性估算的属性(MLE),拟议模型假定了行和列属性的可分离效应,并抓住了行和列之间与低维隐藏要素的关联性。模型继承了古典要素模型的维度减少特征,但引入了一个新的框架,带有可分离行和列系数,代表数据矩阵中的共变量或相关结构。我们提出了一个分块交替和最大化战略,以计算要素负荷和其他模型参数的 MLE。我们讨论了模型的可识别性,在数据矩阵中的行和列数数量增加时,获得了一致性和最小性分布。我们从分析中了解到的一个有趣的现象是,双向要素模型的估计数差异取决于行因素和列系数差异的距离,其方式在经典要素分析中是无法预料的。我们通过模拟和真实数据分析进一步展示了拟议方法的绩效。