In this article, we introduce a two-way factor model for a high-dimensional data matrix and study the properties of the maximum likelihood estimation (MLE). The proposed model assumes separable effects of row and column attributes and captures the correlation across rows and columns with low-dimensional hidden factors. The model inherits the dimension-reduction feature of classical factor models but introduces a new framework with separable row and column factors, representing the covariance or correlation structure in the data matrix. We propose a block alternating, maximizing strategy to compute the MLE of factor loadings as well as other model parameters. We discuss model identifiability, obtain consistency and the asymptotic distribution for the MLE as the numbers of rows and columns in the data matrix increase. One interesting phenomenon that we learned from our analysis is that the variance of the estimates in the two-way factor model depends on the distance of variances of row factors and column factors in a way that is not expected in classical factor analysis. We further demonstrate the performance of the proposed method through simulation and real data analysis.


翻译:在本条中,我们为高维数据矩阵引入了双向要素模型,并研究了最大可能性估算的属性(MLE),拟议模型假定了行和列属性的可分离效应,并抓住了行和列之间与低维隐藏要素的关联性。模型继承了古典要素模型的维度减少特征,但引入了一个新的框架,带有可分离行和列系数,代表数据矩阵中的共变量或相关结构。我们提出了一个分块交替和最大化战略,以计算要素负荷和其他模型参数的 MLE。我们讨论了模型的可识别性,在数据矩阵中的行和列数数量增加时,获得了一致性和最小性分布。我们从分析中了解到的一个有趣的现象是,双向要素模型的估计数差异取决于行因素和列系数差异的距离,其方式在经典要素分析中是无法预料的。我们通过模拟和真实数据分析进一步展示了拟议方法的绩效。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Cross-Modal & Metric Learning 跨模态检索专题-2
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
14+阅读 · 2020年12月17日
Factor Graph Attention
Arxiv
6+阅读 · 2019年4月11日
Arxiv
4+阅读 · 2018年1月15日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Cross-Modal & Metric Learning 跨模态检索专题-2
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员