This study tackles the issue of neural network pruning that inaccurate gradients exist when computing the empirical Fisher Information Matrix (FIM). We introduce SWAP, an Entropic Wasserstein regression (EWR) network pruning formulation, capitalizing on the geometric attributes of the optimal transport (OT) problem. The "swap" of a commonly used standard linear regression (LR) with the EWR in optimization is analytically showcased to excel in noise mitigation by adopting neighborhood interpolation across data points, yet incurs marginal extra computational cost. The unique strength of SWAP is its intrinsic ability to strike a balance between noise reduction and covariance information preservation. Extensive experiments performed on various networks show comparable performance of SWAP with state-of-the-art (SoTA) network pruning algorithms. Our proposed method outperforms the SoTA when the network size or the target sparsity is large, the gain is even larger with the existence of noisy gradients, possibly from noisy data, analog memory, or adversarial attacks. Notably, our proposed method achieves a gain of 6% improvement in accuracy and 8% improvement in testing loss for MobileNetV1 with less than one-fourth of the network parameters remaining.
翻译:暂无翻译