Empirical detection of long range dependence (LRD) of a time series often consists of deciding whether an estimate of the memory parameter $d$ corresponds to LRD. Surprisingly, the literature offers numerous spectral domain estimators for $d$ but there are only a few estimators in the time domain. Moreover, the latter estimators are criticized for relying on visual inspection to determine an observation window $[n_1, n_2]$ for a linear regression to run on. Theoretically motivated choices of $n_1$ and $n_2$ are often missing for many time series models. In this paper, we take the well-known variance plot estimator and provide rigorous asymptotic conditions on $[n_1, n_2]$ to ensure the estimator's consistency under LRD. We establish these conditions for a large class of square-integrable time series models. This large class enables one to use the variance plot estimator to detect LRD for infinite-variance time series (after suitable transformation). Thus, detection of LRD for infinite-variance time series is another novelty of our paper. A simulation study indicates that the variance plot estimator can detect LRD better than the popular spectral domain GPH estimator.
翻译:时间序列的长距离依赖性(LRD) 经验性检测通常包括决定对记忆参数的估计值是否与LRD相对应 $d美元。 令人惊讶的是, 文献提供了许多光谱域估计值, 以美元为单位, 但在时间域中只有几处估计值。 此外, 后一估计值因依赖视觉检查来确定观测窗口的线性回归模式而遭到批评 $n_ 1, n_ 2美元。 理论动机选择的1美元和2美元, 在许多时间序列模型中往往丢失。 因此, 我们采用众所周知的差异绘图估计值估计值, 并在 $[n_ 1, n_2] 上提供严格的测试条件, 以确保估计值在时间域内的一致性。 我们为大量可观察到的平方块时间序列序列模型模型设置了这些条件。 这个大类可以使用差异估计值来检测无限变化时间序列的LRD( ) (经过适当转换后) 。 因此, 发现无限变化时间序列的LRDRD 度时间序列的探测性测测算器条件性条件比我们纸上更精确的测地范围。