In this paper, we establish the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix when the population covariance matrices are not uniformly bounded, which is a nontrivial extension of the Bai-Silverstein theorem (BST) (2004). The latter has strongly influenced the development of high-dimensional statistics, especially in applications of random matrix theory to statistics. However, the assumption of uniform boundedness of the population covariance matrices has seriously limited the applications of the BST. The aim of this paper is to remove the barriers for the applications of the BST. The new CLT, allows spiked eigenvalues to exist, which may be bounded or tend to infinity. An important feature of our result is that the roles of either spiked eigenvalues or the bulk eigenvalues predominate in the CLT, depending on which variance is nonnegligible in the summation of the variances. The CLT for LSS is then applied to compare four linear hypothesis tests: The Wilk's likelihood ratio test, the Lawly-Hotelling trace test, the Bartlett-Nanda-Pillai trace test, and Roy's largest root test. We also derive and analyze their power function under particular alternatives.
翻译:在本文中,我们为大维样本共变矩阵的线性光谱统计(LSS)设定了大维样本共变矩阵的中央限值(CLT),当人口共变矩阵没有统一界限时,这是Bai-Silverstein理论(BST)(2004年)的非三边延伸(2004年),后者对高维统计数据的发展产生了强烈的影响,特别是在随机矩阵理论对统计数据的应用方面。然而,人口共变矩阵统一界限的假设严重限制了BST的应用。本文的目的是消除应用BST的障碍。新的CLT允许超峰性电子元值存在,而后者可能受约束或趋于无限化。我们结果的一个重要特征是,高叶素价值或大宗电子值的作用在CLT中占主导地位,这取决于差异的对比不明显。随后,LSS的CLT用于比较四个线性假设测试:Wilk-N的概率比测试、BAR-BAL-HALT的测试和最大追踪功能。