Symbolic Regression (SR) algorithms learn analytic expressions which both accurately fit data and, unlike traditional machine-learning approaches, are highly interpretable. Conventional SR suffers from two fundamental issues which we address in this work. First, since the number of possible equations grows exponentially with complexity, typical SR methods search the space stochastically and hence do not necessarily find the best function. In many cases, the target problems of SR are sufficiently simple that a brute-force approach is not only feasible, but desirable. Second, the criteria used to select the equation which optimally balances accuracy with simplicity have been variable and poorly motivated. To address these issues we introduce a new method for SR -- Exhaustive Symbolic Regression (ESR) -- which systematically and efficiently considers all possible equations and is therefore guaranteed to find not only the true optimum but also a complete function ranking. Utilising the minimum description length principle, we introduce a principled method for combining these preferences into a single objective statistic. To illustrate the power of ESR we apply it to a catalogue of cosmic chronometers and the Pantheon+ sample of supernovae to learn the Hubble rate as a function of redshift, finding $\sim$40 functions (out of 5.2 million considered) that fit the data more economically than the Friedmann equation. These low-redshift data therefore do not necessarily prefer a $\Lambda$CDM expansion history, and traditional SR algorithms that return only the Pareto-front, even if they found this successfully, would not locate $\Lambda$CDM. We make our code and full equation sets publicly available.


翻译:符号回归(SR)算法学会了一种分析性表达方式,这些表达方式与传统的机器学习方法不同,它们都精确地符合数据,而且与传统的机器学习方法不同,它们都是高度可解释的。常规SR受到我们在工作中处理的两个根本性问题的影响。首先,由于可能的方程式数量随着复杂性而成倍增长,典型的SR方法会搜索空间,因此不一定找到最佳的功能。在许多情况下,SR的目标问题非常简单,因此,布鲁特力方法不仅可行,而且也是可取的。第二,用于选择最优平衡精确与简单相平衡的方程式所使用的标准是变异和动机不良的。为了解决这些问题,我们引入了一种新的SR方法 -- -- 累进性符号回归(ESR) -- 系统而高效地考虑所有可能的方程式数量,因此保证不仅能找到真正的最佳,而且不会找到完整的函数排序。我们运用了最低描述长度的原则性方法,将这些偏好的方法结合到一个单一的客观统计。因此,为了说明ESR的实力,我们将它应用到一个宇宙正数计计数计数计数的目录中,而不是Pantheon+Rial relial relial revial revial reviewal 。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月21日
Arxiv
0+阅读 · 2023年1月21日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
158+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员