In this paper we propose a novel thermodynamically compatible finite volume scheme for the numerical solution of the equations of magnetohydrodynamics (MHD) in one and two space dimensions. As shown by Godunov in 1972, the MHD system can be written as overdetermined symmetric hyperbolic and thermodynamically compatible (SHTC) system. More precisely, the MHD equations are symmetric hyperbolic in the sense of Friedrichs and satisfy the first and second principles of thermodynamics. In a more recent work on SHTC systems, \cite{Rom1998}, the entropy density is a primary evolution variable, and total energy conservation can be shown to be a \textit{consequence} that is obtained after a judicious linear combination of all other evolution equations. The objective of this paper is to mimic the SHTC framework also on the discrete level by directly discretizing the \textit{entropy inequality}, instead of the total energy conservation law, while total energy conservation is obtained via an appropriate linear combination as a \textit{consequence} of the thermodynamically compatible discretization of all other evolution equations. As such, the proposed finite volume scheme satisfies a discrete cell entropy inequality \textit{by construction} and can be proven to be nonlinearly stable in the energy norm due to the discrete energy conservation. In multiple space dimensions the divergence-free condition of the magnetic field is taken into account via a new thermodynamically compatible generalized Lagrangian multiplier (GLM) divergence cleaning approach. The fundamental properties of the scheme proposed in this paper are mathematically rigorously proven. The new method is applied to some standard MHD benchmark problems in one and two space dimensions, obtaining good results in all cases.


翻译:在本文中,我们提出了一个新颖的热动力兼容性定量方案,用于在1个和2个空间维度的磁力动力学方程式的数值解决方案。 如1972年Godunov所显示的, MHD 系统可以写成一个超定的对称双曲和热动力兼容系统。更准确地说,MHD 方程式在弗里德里希斯的意义上是对称性双曲,符合热力动力学的第一和第二原则。在SHTC系统的最新工作中,\cite{Rom1998}, 恒温密度是一个主要的进化变异变量, 能源总节能可以被一个适当的直线组合, 以直流性流性变异性变异为主要变异性变异性。 本文的目的是通过直接分解 textitalital{entriproduction} 全部节能法, 通过一个适当的直线性组合, 直线性变异性变异性变异性变异性机法, 在不断变异性模型中, 一种稳定性变异性变异性变异性变异性变现。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员