Recently, Aaronson et al. (arXiv:2009.07450) showed that detecting interference between two orthogonal states is as hard as swapping these states. While their original motivation was from quantum gravity, we show its applications in quantum cryptography. 1. We construct the first public key encryption scheme from cryptographic \emph{non-abelian} group actions. Interestingly, the ciphertexts of our scheme are quantum even if messages are classical. This resolves an open question posed by Ji et al. (TCC '19). We construct the scheme through a new abstraction called swap-trapdoor function pairs, which may be of independent interest. 2. We give a simple and efficient compiler that converts the flavor of quantum bit commitments. More precisely, for any prefix X,Y $\in$ {computationally,statistically,perfectly}, if the base scheme is X-hiding and Y-binding, then the resulting scheme is Y-hiding and X-binding. Our compiler calls the base scheme only once. Previously, all known compilers call the base schemes polynomially many times (Cr\'epeau et al., Eurocrypt '01 and Yan, Asiacrypt '22). For the security proof of the conversion, we generalize the result of Aaronson et al. by considering quantum auxiliary inputs.


翻译:最近,Aaronson等人(arXiv:2009.07450)指出,发现两个正统州之间的干扰与互换这些州一样困难。虽然它们最初的动机来自量子重力,但我们在量子加密法中展示了它们的应用程序。 1. 我们从加密组别中构建了第一个公用钥匙加密方案。 有趣的是, 我们的系统密码是量的, 即使信息是古典的。 这解决了Ji等人(TCC'19)提出的一个开放问题。 我们通过一个称为互换陷阱函数对配来构建这个方案, 可能具有独立的兴趣。 2. 我们给出一个简单有效的编译器, 转换量位承诺的味道。 更准确地说, 对于任何前缀X, Y $ {compitation, statisticly, perfectly} 任何公用钥匙加密系统都是量的。 如果基套方案是X 和Y- cont- contable, 那么由此产生的方案是Y-hide and X-fer 。 我们的编译者只用这个基础方案一次。 。 之前,所有已知的编译者都呼吁基础系统, 和亚C'transyalcalalalal-cal'translatealalalbismismal.

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员