Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as powerful methods for link prediction (LP). Their performances are less impressive on community detection (CD), where they are often outperformed by simpler alternatives such as the Louvain method. It is still unclear to what extent one can improve CD with GAE and VGAE, especially in the absence of node features. It is moreover uncertain whether one could do so while simultaneously preserving good performances on LP in a multi-task setting. In this workshop paper, summarizing results from our journal publication (Salha-Galvan et al. 2022), we show that jointly addressing these two tasks with high accuracy is possible. For this purpose, we introduce a community-preserving message passing scheme, doping our GAE and VGAE encoders by considering both the initial graph and Louvain-based prior communities when computing embedding spaces. Inspired by modularity-based clustering, we further propose novel training and optimization strategies specifically designed for joint LP and CD. We demonstrate the empirical effectiveness of our approach, referred to as Modularity-Aware GAE and VGAE, on various real-world graphs.


翻译:图形自动转换器(GAE)和变形图形自动转换器(VGAE)作为强有力的连接预测方法出现。在社区探测(CD)方面,其表现不那么令人印象深刻,因为社区探测(CD)往往比Louvain方法等更简单的替代方法表现得更好。目前还不清楚的是,特别是在没有节点特征的情况下,用GAE和VGAE方法改进CD的程度如何。此外,在计算嵌入空间时,人们能否同时同时在多任务环境中保存LP的良好表现。在本讲习班文件中,我们总结了我们期刊出版物(Salha-Galvan等人,2022年)的成果,我们展示了共同以高精确度处理这两项任务的可能性。为此,我们引入了一种社区保存信息传递计划,在计算嵌入空间时既考虑最初的图形,又考虑以前基于Louvain的社区。在基于模块的集束下,我们进一步提出了专门为联合LP和CD设计的新型培训和优化战略。我们展示了我们的方法的经验性有效性,我们称之为Modality-Ewardality、各种图像。

0
下载
关闭预览

相关内容

在网络中发现社区(称为社区检测/发现)是网络科学中的一个基本问题,在过去的几十年中引起了很多关注。 近年来,随着对大数据的大量研究,另一个相关但又不同的问题(称为社区搜索)旨在寻找包含查询节点的最有可能的社区,这已引起了学术界和工业界的广泛关注,它是社区检测问题的依赖查询的变体。
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
13+阅读 · 2021年7月20日
VIP会员
相关VIP内容
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员