In recent years, great progress has been made in the Lift-Splat-Shot-based (LSS-based) 3D object detection method, which converts features of 2D camera view and 3D lidar view to Bird's-Eye-View (BEV) for feature fusion. However, inaccurate depth estimation (e.g. the 'depth jump' problem) is an obstacle to develop LSS-based methods. To alleviate the 'depth jump' problem, we proposed Edge-Aware Bird's-Eye-View (EA-BEV) projector. By coupling proposed edge-aware depth fusion module and depth estimate module, the proposed EA-BEV projector solves the problem and enforces refined supervision on depth. Besides, we propose sparse depth supervision and gradient edge depth supervision, for constraining learning on global depth and local marginal depth information. Our EA-BEV projector is a plug-and-play module for any LSS-based 3D object detection models, and effectively improves the baseline performance. We demonstrate the effectiveness on the nuScenes benchmark. On the nuScenes 3D object detection validation dataset, our proposed EA-BEV projector can boost several state-of-the-art LLS-based baselines on nuScenes 3D object detection benchmark and nuScenes BEV map segmentation benchmark with negligible increment of inference time.
翻译:近年来,Lift-Splat-Shot(LSS)为基础的 3D 目标检测方法取得了显著进展,该方法将 2D 相机视图和 3D 激光视图的特征转换为鸟瞰图(BEV)进行特征融合。然而,不准确的深度估计(例如,“深度跳跃”问题)是开发 LSS 方法的障碍。为了缓解“深度跳跃”问题,我们提出了边缘感知鸟瞰图(EA-BEV)投影器。通过耦合所提出的边缘感知深度融合模块和深度估计模块,所提出的 EA-BEV 投影器解决了问题并在深度上给出了精细的监督。此外,我们提出了稀疏深度监督和梯度边缘深度监督,用于约束全局深度和局部边际深度信息的学习。我们的 EA-BEV 投影器是任何 LSS 3D 目标检测模型的即插即用模块,有效提高了基础性能。我们在 nuScenes 基准测试中展示了其有效性。在 nuScenes 3D 目标检测验证数据集上,我们提出的 EA-BEV 投影器可以在不增加推理时间的情况下提高 nuScenes 3D 目标检测基准测试和 nuScenes BEV 地图分割基准测试的几个最先进的 LLS 基线的性能。