In this paper, a competing risks model is analyzed based on improved adaptive type-II progressive censored sample (IAT-II PCS). Two independent competing causes of failures are considered. It is assumed that lifetimes of the competing causes of failure follow exponential distributions with different means. Maximum likelihood estimators (MLEs) for the unknown model parameters are obtained. Using asymptotic normality property of MLE, the asymptotic confidence intervals are constructed. Existence and uniqueness properties of the MLEs are studied. Further, bootstrap confidence intervals are computed. The Bayes estimators are obtained under symmetric and asymmetric loss functions with non-informative and informative priors. For informative priors, independent gamma distributions are considered. Highest posterior density (HPD) credible intervals are obtained. A Monte Carlo simulation study is carried out to compare performance of the established estimates. Furthermore, three different optimality criteria are proposed to obtain the optimal censoring plan. Finally, a real-life data set is considered for illustrative purposes.


翻译:在本文中,根据改进的适应性类型二累进审查抽样(IAT-II PCS)分析一个相互竞争的风险模型。考虑了两个独立的相互竞争的失败原因。假设相竞争的失败原因的寿命期是指数分布,使用不同手段;获得未知模型参数的最大可能性估计值。使用MLE的无症状常态特性,构建了无症状信任间隔;研究了MLE的存在性和独特性特性;还计算了靴带信任度间隔。Bayes估计值是在对称和不对称损失功能下获得的,具有非信息性和信息性前科。关于信息前科,考虑独立的伽马分布。获得最高后方密度的可靠间隔。进行蒙特卡洛模拟研究,以比较既定估计数的性能。此外,还提出了三种不同的最佳性标准,以获得最佳的检查计划。最后,为说明目的,还考虑了一套真实生活数据。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员