This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Though many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method's adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments shows that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020 outperforms the state-of-the-art method SAR from 2023 under our online setting. Our online evaluation protocol emphasizes the need for developing TTA methods that are efficient and applicable in realistic settings.
翻译:本文提出了一种新颖的在线评估协议,用于测试时适应性(TTA)方法,在提供更少的用于适应的样本给较慢的方法的惩罚。TTA方法在测试时利用未标记数据来适应分布偏移。虽然已经提出了许多有效的方法,但是它们惊人的性能通常是以显著增加计算预算为代价的。当前的评估协议忽略了这种额外计算成本的影响,影响了它们在实际应用中的适用性。为了解决这个问题,我们提出了一种更现实的TTA方法的评估协议,其中数据从恒定速度的数据流中以在线方式接收,从而考虑到方法的适应速度。我们将我们提出的协议应用于在多个数据集和场景下基准测试多个TTA方法。广泛的实验表明,当考虑推理速度时,简单而快速的方法可以胜过更复杂但更慢的方法。例如,2020年的SHOT在我们的在线设置下优于2023年的最先进方法SAR。我们的在线评估协议强调了开发在现实环境中高效且适用的TTA方法的必要性。