Transparency regarding the processing of personal data in online services is a necessary precondition for informed decisions on whether or not to share personal data. In this paper, we argue that privacy interfaces shall incorporate the context of display, personal preferences, and individual competences of data subjects following the principles of universal design and usable privacy. Doing so requires -- among others -- to consciously decouple the provision of transparency information from their ultimate presentation. To this end, we provide a general model of how transparency information can be provided from a data controller to data subjects, effectively leveraging machine-readable transparency information and facilitating versatile presentation interfaces. We contribute two actual implementations of said model: 1) a GDPR-aligned privacy dashboard and 2) a chatbot and virtual voice assistant enabled by conversational AI. We evaluate our model and implementations with a user study and find that these approaches provide effective and time-efficient transparency. Consequently, we illustrate how transparency can be enhanced using machine-readable transparency information and how data controllers can meet respective regulatory obligations.


翻译:在线服务中个人数据处理的透明度是就是否共享个人数据作出知情决定的必要先决条件。在本文中,我们认为,隐私接口应包含数据主体的显示、个人偏好和个体能力,遵循通用设计和可用隐私的原则。这样做除其他外,要求自觉地将透明度信息的提供与其最终列报方式脱钩。为此,我们提供了一个一般模式,说明如何从数据控制者到数据主体提供透明度信息,有效利用机器可读透明信息,便利多功能演示界面。我们促进两种实际实施上述模式:(1) 符合GDP的隐私仪表板;(2) 由对话AI所促成的聊天和虚拟语音助理。我们用用户研究来评估我们的模型和实施情况,发现这些方法提供了有效和有时间效率的透明度。因此,我们说明如何利用机器可读透明信息提高透明度,以及数据控制者如何履行各自的监管义务。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员