Natural language understanding (NLU) has two core tasks: intent classification and slot filling. The success of pre-training language models resulted in a significant breakthrough in the two tasks. One of the promising solutions called BERT can jointly optimize the two tasks. We note that BERT-based models convert each complex token into multiple sub-tokens by wordpiece algorithm, which generates a mismatch between the lengths of the tokens and the labels. This leads to BERT-based models do not do well in label prediction which limits model performance improvement. Many existing models can be compatible with this issue but some hidden semantic information is discarded in the fine-tuning process. We address the problem by introducing a novel joint method on top of BERT which explicitly models the multiple sub-tokens features after wordpiece tokenization, thereby contributing to the two tasks. Our method can well extract the contextual features from complex tokens by the proposed sub-words attention adapter (SAA), which preserves overall utterance information. Additionally, we propose an intent attention adapter (IAA) to obtain the full sentence features to aid users to predict intent. Experimental results confirm that our proposed model is significantly improved on two public benchmark datasets. In particular, the slot filling F1 score is improved from 96.1 to 98.2 (2.1% absolute) on the Airline Travel Information Systems (ATIS) dataset.


翻译:自然语言理解( NLU) 有两个核心任务: 意图分类和空档填充。 培训前语言模型的成功导致两个任务的重大突破。 一个叫BERT的有希望的解决方案可以共同优化这两个任务。 我们注意到, BERT 的模型将每个复杂的符号转换成多次方制字形算法,这在代号长度和标签之间造成不匹配。 这导致基于BERT的模型在标签预测上不很好,从而限制了模型改进的功能。 许多现有模型可以与这一问题兼容,但在微调过程中,一些隐藏的语义信息被丢弃。 我们通过在BERT顶端采用新颖的联合方法解决这个问题,该方法在字形代号后明确模拟多个子名特征,从而对这两项任务作出贡献。 我们的方法可以将背景特征从拟议的子词调适配码调控件(SAAA) 中提取出复杂的代号,该代号保存了总体的全局信息。 此外, 我们提议一个意图调整器( IAAAA) 以获得帮助用户预测意图的全句特征。 我们通过实验性结果的结果是, 在BER2 AS 1 的绝对值中, AS AS 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
46+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2019年6月19日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
Arxiv
12+阅读 · 2019年2月28日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员