A finite mixture model is used to learn trends from the currently available data on coronavirus (COVID-19). Data on the number of confirmed COVID-19 related cases and deaths for European countries and the United States (US) are explored. A semi-supervised clustering approach with positive equivalence constraints is used to incorporate country and state information into the model. The analysis of trends in the rates of cases and deaths is carried out jointly using a mixture of multivariate Gaussian non-linear regression models with a mean trend specified using a generalized logistic function. The optimal number of clusters is chosen using the Bayesian information criterion. The resulting clusters provide insight into different mitigation strategies adopted by US states and European countries. The obtained results help identify the current relative standing of individual states and show a possible future if they continue with the chosen mitigation technique
翻译:使用一个有限的混合物模型,从目前可获得的冠状病毒(COVID-19)数据中了解趋势; 探讨关于欧洲国家和美国(美国)经确认的COVID-19相关病例和死亡数的数据; 采用半监督的集群办法,将国家和州信息纳入模型,采用具有积极等值限制的半监督集群办法,将国家和州信息纳入模型; 使用多种变式高斯非线性非线性回归模型混合进行病例和死亡率趋势分析,其中以普遍物流功能规定一种平均趋势; 采用巴耶斯信息标准选择最佳的集群数量; 采用巴耶斯信息标准选择最佳的集群数量; 由此形成的集群对美国和欧洲国家采用的不同缓解战略提供深入了解; 所获得的结果有助于确定个别国家当前的相对状况,并显示如果继续采用选定的缓解技术,可能的未来。