Surface reconstruction is very challenging when the input point clouds, particularly real scans, are noisy and lack normals. Observing that the Multilayer Perceptron (MLP) and the implicit moving least-square function (IMLS) provide a dual representation of the underlying surface, we introduce Neural-IMLS, a novel approach that directly learns the noise-resistant signed distance function (SDF) from unoriented raw point clouds in a self-supervised fashion. We use the IMLS to regularize the distance values reported by the MLP while using the MLP to regularize the normals of the data points for running the IMLS. We also prove that at the convergence, our neural network, benefiting from the mutual learning mechanism between the MLP and the IMLS, produces a faithful SDF whose zero-level set approximates the underlying surface. We conducted extensive experiments on various benchmarks, including synthetic scans and real scans. The experimental results show that {\em Neural-IMLS} can reconstruct faithful shapes on various benchmarks with noise and missing parts. The source code can be found at~\url{https://github.com/bearprin/Neural-IMLS}.
翻译:当输入点云,特别是真实的扫描,非常吵闹和缺乏正常时,地表重建非常具有挑战性。观察多层光谱(MLP)和隐性移动最小平方函数(IMLS)提供了基础表面的双重代表,我们引入神经-IMLS,这是一种新颖的方法,直接从非定向的原始点云中以自我监督的方式从不防噪的信号点云中学习有签字的距离功能(SDF)。我们使用IMLS来规范MLP报告的距离值,同时使用MLP来规范运行IMLS的数据点的正常值。我们还证明,在交汇时,我们从MLP和IMLS之间的相互学习机制中受益的神经网络产生了忠实的SDF,其零级设置接近了基础表面。我们用各种基准进行了广泛的实验,包括合成扫描和真实扫描。实验结果显示,Sureal-IMLS}可以重建各种基准的准确度形状,有噪音和缺失部分。源代码可以在\urlAM/prius/NIS/NIFForal找到。