A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
翻译:最近的一项研究显示,一个被称为神经崩溃的现象是,在为分类而培训的最后阶段,内流特性手段和分类器重量矢量的分解器会聚集在简单x等宽角紧框架的脊椎上,以进行分类;在本文件中,我们探讨了最后一层特性中心和分解器的对应结构;根据我们的经验和理论分析,我们指出,语义分解自然地带来背景关联和不同等级之间分布不平衡,打破了特征中心和分类器之间神经崩溃的角形和最大分离结构。然而,这种对称结构有利于对次要类别的歧视。为维护这些优势,我们在特征中心引入了常规化器,鼓励网络学习更接近不平衡的分解结构的特征。实验结果显示,我们的方法可以在2D和3D语系分解基准方面带来重大改进。此外,我们的方法排名第1级,并在扫描Net-200试验领头板上设置了新的记录(+6.8% mIoU)。为了保护这些优势,我们将在特性中心引入一个常规化器,以鼓励网络在不平衡的分解结构中学习更贴近于吸引力结构的特征。实验结果可以在 http://Lgres/s/Lbreshisarsearmassearararararve。