We describe a method for realistic depth synthesis that learns diverse variations from the real depth scans and ensures geometric consistency for effective synthetic-to-real transfer. Unlike general image synthesis pipelines, where geometries are mostly ignored, we treat geometries carried by the depth based on their own existence. We propose differential contrastive learning that explicitly enforces the underlying geometric properties to be invariant regarding the real variations been learned. The resulting depth synthesis method is task-agnostic and can be used for training any task-specific networks with synthetic labels. We demonstrate the effectiveness of the proposed method by extensive evaluations on downstream real-world geometric reasoning tasks. We show our method achieves better synthetic-to-real transfer performance than the other state-of-the-art. When fine-tuned on a small number of real-world annotations, our method can even surpass the fully supervised baselines.
翻译:我们描述一种现实的深度合成方法,该方法从真正的深度扫描中了解各种差异,并确保有效合成到实际转移的几何一致性。与一般的图像合成管道不同,因为一般图像合成管道大多被忽略,我们根据它们本身的存在来处理由深度携带的地理特征。我们建议采用不同的对比性学习方法,明确执行基本的几何特性,以对真实变化进行不变的学习。由此产生的深度合成方法具有任务敏感性,可用于培训任何带有合成标签的任务特定网络。我们通过对下游真实世界的几何推理任务进行广泛评估,来表明拟议方法的有效性。我们展示的方法比其他艺术的状态更能实现合成到真实的转移。当细微调整少量真实世界的描述时,我们的方法甚至可以超过完全监督的基线。