We study the sequential testing problem of two alternative hypotheses regarding an unknown parameter in an exponential family when observations are costly. In a Bayesian setting, the problem can be embedded in a Markovian framework. Using the conditional probability of one of the hypotheses as the underlying spatial variable, we show that the cost function is concave and that the posterior distribution becomes more concentrated as time goes on. Moreover, we study time monotonicity of the value function. For a large class of model specifications, the cost function is non-decreasing in time, and the optimal stopping boundaries are thus monotone.
翻译:当观测费用昂贵时,我们研究一个指数式大家庭中一个未知参数的两个替代假设的相继测试问题。在拜叶斯环境,问题可以嵌入马尔科维安框架。使用一个假设的有条件概率作为潜在的空间变量,我们证明成本函数是混结的,后端分布随着时间的流逝而更加集中。此外,我们研究价值函数的时间单数性。对于一大批模型规格,成本函数在时间上是不会下降的,因此最佳停止边界是单一的。