Many modern applications seek to understand the relationship between an outcome variable $Y$ and a covariate $X$ in the presence of a (possibly high-dimensional) confounding variable $Z$. Although much attention has been paid to testing whether $Y$ depends on $X$ given $Z$, in this paper we seek to go beyond testing by inferring the strength of that dependence. We first define our estimand, the minimum mean squared error (mMSE) gap, which quantifies the conditional relationship between $Y$ and $X$ in a way that is deterministic, model-free, interpretable, and sensitive to nonlinearities and interactions. We then propose a new inferential approach called floodgate that can leverage any working regression function chosen by the user (allowing, e.g., it to be fitted by a state-of-the-art machine learning algorithm or be derived from qualitative domain knowledge) to construct asymptotic confidence bounds, and we apply it to the mMSE gap. In addition to proving floodgate's asymptotic validity, we rigorously quantify its accuracy (distance from confidence bound to estimand) and robustness. We then show we can apply the same floodgate principle to a different measure of variable importance when $Y$ is binary. Finally, we demonstrate floodgate's performance in a series of simulations and apply it to data from the UK Biobank to infer the strengths of dependence of platelet count on various groups of genetic mutations.


翻译:许多现代应用都试图理解结果变量Y美元和共同变换美元之间在(可能是高维的)可变Z美元之间的关系。虽然我们非常关注测试美元是否取决于给Z美元,但在本文件中,我们试图通过推断依赖性的力量,超越测试范围。我们首先定义我们的估计值,即最小平均正方差(mMSE),它以确定性、无模型、可解释和敏感于非线性和互动的方式,量化Y美元和X美元之间的有条件关系。我们随后提出了一种称为“洪门”的新的推论方法,它能够利用用户选择的任何工作回归功能(例如,可以使用最先进的机器学习算法,或从定性域知识中推导出),用来构建不那么简单的信任度,我们将其应用于MMSE差距。除了证明洪门具有确定性、无模型、可解释性、对非线性和互动十分敏感之外,我们还提议一种称为“洪门”的新的推论方法,用以利用用户选择的任何工作回归功能(例如,用最先进的机器学习算法算法,或从质量知识中推算出)来构建一个不稳妥的信任度的模型。我们最后将其精确度的精确度的精确度测量度测量度测量。我们可以将各种数据的精确度运用到测量度。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
102+阅读 · 2021年8月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月9日
Arxiv
7+阅读 · 2021年10月12日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
102+阅读 · 2021年8月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员