Differential equations in general and neural ODEs in particular are an essential technique in continuous-time system identification. While many deterministic learning algorithms have been designed based on numerical integration via the adjoint method, many downstream tasks such as active learning, exploration in reinforcement learning, robust control, or filtering require accurate estimates of predictive uncertainties. In this work, we propose a novel approach towards estimating epistemically uncertain neural ODEs, avoiding the numerical integration bottleneck. Instead of modeling uncertainty in the ODE parameters, we directly model uncertainties in the state space. Our algorithm - distributional gradient matching (DGM) - jointly trains a smoother and a dynamics model and matches their gradients via minimizing a Wasserstein loss. Our experiments show that, compared to traditional approximate inference methods based on numerical integration, our approach is faster to train, faster at predicting previously unseen trajectories, and in the context of neural ODEs, significantly more accurate.
翻译:一般来说,不同的方程式,特别是神经元体,是连续时间系统识别的一个基本技术。虽然许多决定性的学习算法都是通过联合方法以数字集成为基础设计的,但许多下游任务,如积极学习、探索强化学习、强力控制或过滤等,都需要准确估计预测性不确定性。在这项工作中,我们提出了一种新颖的方法来估计认知性不确定神经元,避免数字整合瓶颈。我们不以数字集成参数的不确定性为模型,而是直接模拟国家空间的不确定性。我们的算法——分布梯度匹配(DGM)——通过尽量减少瓦塞斯坦的损失,联合培训一个平滑和动态模型,并匹配其梯度。我们的实验表明,与基于数字集成的传统近似推论方法相比,我们的方法是更快地培训,更快地预测了以前看不见的轨迹,在神经轨迹中,更精确得多。