Let $\mathcal{A}$ be an algorithm with expected running time $e^X$, conditioned on the value of some random variable $X$. We construct an algorithm $\mathcal{A'}$ with expected running time $O(e^{E[X]})$, that fully executes $\mathcal{A}$. In particular, an algorithm whose running time is a random variable $T$ can be converted to one with expected running time $O(e^{E[\ln T]})$, which is never worse than $O(E[T])$. No information about the distribution of $X$ is required for the construction of $\mathcal{A}'$.
翻译:Let\mathcal{A}$( mathcal{A}$) 是一种有预期运行时间的算法, 以某个随机变量$X$的价值为条件。 我们建造了一个有预期运行时间的算法 $\ mathcal{A}$( e ⁇ E[ X]} $) 。 特别是, 一个运行时间是随机变量$T$( e ⁇ E[ lnT]} 的算法, 可以转换成有预期运行时间为$O( e ⁇ E[ T]} $( $) 的算法, 这永远不会比 $O( E[ T]] $更差。 建造 $\ mathcal{A} 美元不需要有关美元分配的信息 。