In this paper, we propose a novel method for solving high-dimensional spectral fractional Laplacian equations. Using the Caffarelli-Silvestre extension, the $d$-dimensional spectral fractional equation is reformulated as a regular partial differential equation of dimension $d+1$. We transform the extended equation as a minimal Ritz energy functional problem and search for its minimizer in a special class of deep neural networks. Moreover, based on the approximation property of networks, we establish estimates on the error made by the deep Ritz method. Numerical results are reported to demonstrate the effectiveness of the proposed method for solving fractional Laplacian equations up to ten dimensions. Technically, in this method, we design a special network-based structure to adapt to the singularity and exponential decaying of the true solution. Also, A hybrid integration technique combining Monte Carlo method and sinc quadrature is developed to compute the loss function with higher accuracy.
翻译:在本文中,我们提出了一个解决高维光谱分数拉平方程式的新方法。使用Caffarelli-Silvestre扩展,美元维度光谱分数方程式被重新改制为维度的常规部分差分方程式$d+1美元。我们将扩展方程式转换成一个最小的里兹能量功能问题,并在一个特殊的深神经网络类别中搜索其最小化器。此外,根据网络的近似属性,我们确定了深里兹方法的错误估计值。报告的数字结果显示,拟议的分解拉平方程式法在十维上的有效性。从技术上讲,我们设计了一个特殊的网络结构,以适应真实解决方案的奇异性和指数衰减。此外,我们开发了一种混合集成技术,将蒙特卡洛法和辛茨二次曲线模型结合起来,以便以更高的精确度计算损失函数。