In this work, we develop an online adaptive enrichment method within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for solving the linear heterogeneous poroelasticity models with coefficients of high contrast. The proposed method makes use of information of residual-driven error indicators to enrich the multiscale spaces for both the displacement and the pressure variables in the model. Additional online basis functions are constructed in oversampled regions accordingly and are adaptively chosen to reduce the error the most. A complete theoretical analysis of the online enrichment algorithm is provided and justified by thorough numerical experiments.
翻译:在这项工作中,我们在约束能量最小化广义多尺度有限元方法(CEM-GMsFEM)的框架内开发了一个在线自适应富化方法,用于解决具有高对比度系数的线性异质性渗流弹性模型。所提出的方法利用残差驱动的误差指标信息,对模型中的位移和压力变量进行多尺度空间的富化。相应地,在过采样区域中构造了额外的在线基函数,并自适应选择以使误差最小化。提供了在线富化算法的完整理论分析,并通过深入的数值实验进行了验证。