Point set registration is one of the challenging tasks in areas such as pattern recognition, computer vision and image processing. Efficient performance of this task has been a hot topic of research due to its widespread applications. We propose a parameterised quantum circuit learning approach to point set matching problem. The proposed method benefits from a kernel-based quantum generative model that: 1) is able to find all possible optimal matching solution angles, 2) is potentially able to show quantum learning supremacy, and 3) benefits from kernel-embedding techniques and integral probability metrics for the definition of a powerful loss function. Moreover, the theoretical framework has been backed up by satisfactory preliminary and proof of concept experimental results.


翻译:点集登记是模式识别、计算机视觉和图像处理等领域的一项具有挑战性的任务。这项任务的高效执行由于其广泛应用而成为研究的一个热题。我们提出了一个参数化的量子电路学习方法,以找出匹配问题。拟议方法得益于基于内核的量子变现模型:(1) 能够找到所有可能的最佳匹配解决方案角度,(2) 有可能显示量子学习至上,(3) 内核组合技术和确定强力损失功能的综合概率衡量标准的好处。此外,理论框架还得到了概念实验结果令人满意的初步证据的支持。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
115+阅读 · 2019年12月24日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2018年1月25日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员