We present a quantum interior-point method (IPM) for second-order cone programming (SOCP) that runs in time $\widetilde{O} \left( n\sqrt{r} \frac{\zeta \kappa}{\delta^2} \log \left(1/\epsilon\right) \right)$ where $r$ is the rank and $n$ the dimension of the SOCP, $\delta$ bounds the distance of intermediate solutions from the cone boundary, $\zeta$ is a parameter upper bounded by $\sqrt{n}$, and $\kappa$ is an upper bound on the condition number of matrices arising in the classical IPM for SOCP. The algorithm takes as its input a suitable quantum description of an arbitrary SOCP and outputs a classical description of a $\delta$-approximate $\epsilon$-optimal solution of the given problem. Furthermore, we perform numerical simulations to determine the values of the aforementioned parameters when solving the SOCP up to a fixed precision $\epsilon$. We present experimental evidence that in this case our quantum algorithm exhibits a polynomial speedup over the best classical algorithms for solving general SOCPs that run in time $O(n^{\omega+0.5})$ (here, $\omega$ is the matrix multiplication exponent, with a value of roughly $2.37$ in theory, and up to $3$ in practice). For the case of random SVM (support vector machine) instances of size $O(n)$, the quantum algorithm scales as $O(n^k)$, where the exponent $k$ is estimated to be $2.59$ using a least-squares power law. On the same family random instances, the estimated scaling exponent for an external SOCP solver is $3.31$ while that for a state-of-the-art SVM solver is $3.11$.


翻译:我们为二阶锥形编程(SOCP)提出了一个量子内点法(IPM) 美元, 该值在时间上运行 $\ zeta$, 该值由美元=sqrt{O} 美元=左( n\ sqrt{r}\ frac_zeta\ kapa\ kapa\ kdelta2}\ log\ left(1/\\ epsilon\right)\right) 美元, 其中美元是SOCP的等级和维度, 其中美元是美元=xxxxxxl( 美元=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

在机器学习中,支持向量机(SVM,也称为支持向量网络)是带有相关学习算法的监督学习模型,该算法分析用于分类和回归分析的数据。支持向量机(SVM)算法是一种流行的机器学习工具,可为分类和回归问题提供解决方案。给定一组训练示例,每个训练示例都标记为属于两个类别中的一个或另一个,则SVM训练算法会构建一个模型,该模型将新示例分配给一个类别或另一个类别,使其成为非概率二进制线性分类器(尽管方法存在诸如Platt缩放的问题,以便在概率分类设置中使用SVM)。SVM模型是将示例表示为空间中的点,并进行了映射,以使各个类别的示例被尽可能宽的明显间隙分开。然后,将新示例映射到相同的空间,并根据它们落入的间隙的侧面来预测属于一个类别。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
138+阅读 · 2021年3月17日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
算法优化|梯度下降和随机梯度下降 — 从0开始
全球人工智能
7+阅读 · 2017年12月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
1+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月26日
Arxiv
0+阅读 · 2021年5月25日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
算法优化|梯度下降和随机梯度下降 — 从0开始
全球人工智能
7+阅读 · 2017年12月25日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员