Traditional drug discovery pipeline takes several years and cost billions of dollars. Deep generative and predictive models are widely adopted to assist in drug development. Classical machines cannot efficiently produce atypical patterns of quantum computers which might improve the training quality of learning tasks. We propose a suite of quantum machine learning techniques e.g., generative adversarial network (GAN), convolutional neural network (CNN) and variational auto-encoder (VAE) to generate small drug molecules, classify binding pockets in proteins, and generate large drug molecules, respectively.
翻译:传统药物发现管道需要几年时间,花费数十亿美元。深基因和预测模型被广泛采用,以协助药物开发。古典机器无法有效生产非典型的量子计算机模式,从而可能提高学习任务的培训质量。我们提出了一套量子机器学习技术,例如基因对抗网络(GAN)、进化神经网络(CNN)和变异自动编码器(VAE),以产生小药物分子,将装有蛋白质的口袋分类,并产生大型药物分子。