We study the performance of classical and quantum machine learning (ML) models in predicting outcomes of physical experiments. The experiments depend on an input parameter $x$ and involve execution of a (possibly unknown) quantum process $\mathcal{E}$. Our figure of merit is the number of runs of $\mathcal{E}$ required to achieve a desired prediction performance. We consider classical ML models that perform a measurement and record the classical outcome after each run of $\mathcal{E}$, and quantum ML models that can access $\mathcal{E}$ coherently to acquire quantum data; the classical or quantum data is then used to predict outcomes of future experiments. We prove that for any input distribution $\mathcal{D}(x)$, a classical ML model can provide accurate predictions on average by accessing $\mathcal{E}$ a number of times comparable to the optimal quantum ML model. In contrast, for achieving accurate prediction on all inputs, we prove that exponential quantum advantage is possible. For example, to predict expectations of all Pauli observables in an $n$-qubit system $\rho$, classical ML models require $2^{\Omega(n)}$ copies of $\rho$, but we present a quantum ML model using only $\mathcal{O}(n)$ copies. Our results clarify where quantum advantage is possible and highlight the potential for classical ML models to address challenging quantum problems in physics and chemistry.
翻译:我们研究了古典和量子机器学习模型在预测物理实验结果方面的性能。 实验依赖于一个输入参数$x$, 并需要执行一个( 可能未知的) 量子进程$\ mathcal{E} $。 我们的优点数字是达到理想的预测性能所需的运行量$mathcal{E} 美元。 我们考虑在每次运行$\ mathcal{E} 美元后进行测量和记录经典结果的古典ML模型, 以及能够一致地获取量子数据的量子模型。 然后, 古典或量数据被用于预测未来实验结果。 我们证明, 对于任何投入分配量子进程, 美元\ mathcal{D} (x) 美元, 典型ML模式可以提供平均准确的预测值, 使用 $mcall{mr} 最高量量值模型。 相比之下, 为了准确预测所有投入的量子量值, 我们证明指数优势是可能的。 例如, 我们预测所有保罗的量值模型, $ 美元 的值模型需要 $ 美元 美元的Mrqum rqr r yr rx yr yr yr yr yrm yr yr yr yr yr yrm ym yr yrm yr ym ym ym ym ym ym ym ym ym ym ym ym ym ym ym yle yle ym ym ym yle yr 。