As Large Language Models (LLMs) gain in popularity, it is important to understand how novice programmers use them. We present a thematic analysis of 33 learners, aged 10-17, independently learning Python through 45 code-authoring tasks using Codex, an LLM-based code generator. We explore several questions related to how learners used these code generators and provide an analysis of the properties of the written prompts and the generated code. Specifically, we explore (A) the context in which learners use Codex, (B) what learners are asking from Codex, (C) properties of their prompts in terms of relation to task description, language, and clarity, and prompt crafting patterns, (D) the correctness, complexity, and accuracy of the AI-generated code, and (E) how learners utilize AI-generated code in terms of placement, verification, and manual modifications. Furthermore, our analysis reveals four distinct coding approaches when writing code with an AI code generator: AI Single Prompt, where learners prompted Codex once to generate the entire solution to a task; AI Step-by-Step, where learners divided the problem into parts and used Codex to generate each part; Hybrid, where learners wrote some of the code themselves and used Codex to generate others; and Manual coding, where learners wrote the code themselves. The AI Single Prompt approach resulted in the highest correctness scores on code-authoring tasks, but the lowest correctness scores on subsequent code-modification tasks during training. Our results provide initial insight into how novice learners use AI code generators and the challenges and opportunities associated with integrating them into self-paced learning environments. We conclude with various signs of over-reliance and self-regulation, as well as opportunities for curriculum and tool development.
翻译:暂无翻译