We take an algorithmic approach to studying the solution space geometry of relatively sparse random and bounded degree $k$-CNFs for large $k$. In the course of doing so, we establish that with high probability, a random $k$-CNF $\Phi$ with $n$ variables and clause density $\alpha = m/n \lesssim 2^{k/6}$ has a giant component of solutions that are connected in a graph where solutions are adjacent if they have Hamming distance $O_k(\log n)$ and that a similar result holds for bounded degree $k$-CNFs at similar densities. We are also able to deduce looseness results for random and bounded degree $k$-CNFs in a similar regime. Although our main motivation was understanding the geometry of the solution space, our methods have algorithmic implications. Towards that end, we construct an idealized block dynamics that samples solutions from a random $k$-CNF $\Phi$ with density $\alpha = m/n \lesssim 2^{k/52}$. We show this Markov chain can with high probability be implemented in polynomial time and by leveraging spectral independence, we also observe that it mixes relatively fast, giving a polynomial time algorithm to with high probability sample a uniformly random solution to a random $k$-CNF. Our work suggests that the natural route to pinning down when a giant component exists is to develop sharper algorithms for sampling solutions in random $k$-CNFs.


翻译:我们用一种算法方法来研究相对稀少的随机和约束度为$k-CNF的解决方案空间几何。 在这样做的过程中,我们以很高的概率确定,一个随机的美元-CNF$\Phi$,其中含有美元变量和条款密度$alpha = m/n\lessim 2 ⁇ k/6}美元,其中含有一个巨大的解决方案组成部分,这些解决方案在一张图中相联,如果解决方案的相邻位置是 $-k(gg) 美元(g) 美元,而且一个类似结果在相似的密度下,约束度为$-CNF$-CNF美元。在类似制度下,我们还能够得出随机和约束度为$k-CNF$的随机松散结果。虽然我们的主要动机是了解解决方案空间的几何位置,但我们的方法具有算法影响。 最终,我们构建了一个理想的块动态,即从一个随机的 $-CNF 美元 = m/n COMslimexim $ 2 ⁇ /52} 。我们也可以推断一个随机的直径直径直径直径直径直路路路路方的解法 至一个相对的概率。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月12日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员