We propose a new simulation-based estimation method, adversarial estimation, for structural models. The estimator is formulated as the solution to a minimax problem between a generator (which generates simulated observations using the structural model) and a discriminator (which classifies whether an observation is simulated). The discriminator maximizes the accuracy of its classification while the generator minimizes it. We show that, with a sufficiently rich discriminator, the adversarial estimator attains parametric efficiency under correct specification and the parametric rate under misspecification. We advocate the use of a neural network as a discriminator that can exploit adaptivity properties and attain fast rates of convergence. We apply our method to the elderly's saving decision model and show that our estimator uncovers the bequest motive as an important source of saving across the wealth distribution, not only for the rich.
翻译:我们为结构模型提出了一种新的基于模拟的估计方法,即对抗性估算方法。估计符是用来解决产生者(利用结构模型生成模拟观测)和歧视者(对是否模拟观察进行分类)之间的小问题。歧视者最大限度地提高了分类的准确性,而生成者则尽量减少了分类。我们表明,由于存在足够丰富的歧视者,对抗性估计符在正确的规格和不精确的参数率下取得了参数效率。我们主张使用神经网络作为歧视者,能够利用适应性特性并达到快速趋同率。我们将我们的方法应用于老年人储蓄决策模型,并表明我们的估计者发现遗赠动机是财富分配的重要来源,而不仅仅是富人。