Haptic feedback can improve safety of teleoperated robots when situational awareness is limited or operators are inattentive. Standard potential field approaches increase haptic resistance as an obstacle is approached, which is desirable when the operator is unaware of the obstacle but undesirable when the movement is intentional, such as when the operator wishes to inspect or manipulate an object. This paper presents a novel haptic teleoperation framework that estimates the operator's attentiveness to dampen haptic feedback for intentional movement. A biologically-inspired attention model is developed based on computational working memory theories to integrate visual saliency estimation with spatial mapping. This model generates an attentiveness map in real-time, and the haptic rendering system generates lower haptic forces for obstacles that the operator is estimated to be aware of. Experimental results in simulation show that the proposed framework outperforms haptic teleoperation without attentiveness estimation in terms of task performance, robot safety, and user experience.
翻译:当情况意识有限或操作者不注意时,Hapic回馈会提高远程操作机器人的安全性。标准潜在实地方法会增加偶然性阻力,因为要接近障碍,当操作者不知道存在障碍,而当移动是故意的时,例如操作者希望检查或操纵物体时,这种阻力是可取的。本文提出了一个新的机能性电话操作框架,估计操作者是否注意抑制有意移动的偶然性反馈。一种生物激发的注意力模型是根据计算工作记忆理论开发的,目的是将视觉显著估计与空间绘图结合起来。这一模型产生实时的注意图,而机能生成系统则产生操作者估计会知道的障碍的较低性能。模拟实验结果表明,拟议的框架在任务性能、机器人安全和用户经验方面没有注意估计,因而优于机能性远程操作。